Problem A: Tire Dimensions

Problem A: Tire Dimensions

Input: tire.in
Output: tire.out

Given the tire descriptor typically found on the sidewall of a passenger or light truck tire, you will calculate
the tire's overall circumference. Each line of the sample input contains an example of a tire descriptor. The
following diagram illustrates some of the terminology:

section
width

S

& F3
D I

section
height

overall diameter
nominal rim
diameter

The tire descriptor contains the following items of information:

1. One or two upper case letters to specify the type of tire. For our purposes, the tire types are "P"
(passenger), "LT" (light truck), and "T" (temporary spare tire).

2. The section width (of an inflated tire) in millimeters. This number is followed by a slash.

3. The ratio of the section height to the section width, expressed as a percentage. For example, the ratio
75 means that the section height of an inflated tire is 75% of its section width.

4. Information about the construction of the tire (one upper—case letter), optionally preceded by the
speed symbol (also one upper—case letter). In the first, second, and fourth lines of the sample output,
the tire construction is specified by "R", which means "radial". In the third line, it is "D", which
means "diagonal". In the second line, "R" is preceded by the optional speed symbol "H".

5. The nominal rim diameter in inches. It is called "nominal" because it does not include the rim's
flanges.

The overall circumference (the goal of your calculations) is based on the overall diameter, which is the
diameter of an inflated tire at the outermost surface of the tread.

Problem A: Tire Dimensions

Problem A: Tire Dimensions

Input

The input will consist of one or more lines, terminated by end—of—file. Each line of the input will contain one
tire descriptor, as discussed in the preceding paragraphs. All numerical quantities will be positive integers.
Exactly one blank space will separate consecutive items (including the slash) on the input line.

Output

For each line of input, the program will produce exactly one line of output, consisting of: the input line,
followed by a colon, one blank space, and the overall circumference, expressed in centimeters, rounded to the
nearest integer. Note that 1 centimeter equals 10 millimeters, and 1 inch equals 2.54 centimeters.

Sample input

P 195 / 75 R 14

P 205 / 60 HR 15
T 115 / 70 D 15
LT 245 / 75 R 16

Output for sample input

P 195 / 75 R 14: 204
P 205 / 60 H R 15: 197
T 115 / 70 D 15: 170
LT 245 / 75 R 16: 243

Input 2

Problem B: Random Walk

Problem B: Random Walk

Input: randomwalk.in
Output: randomwalk. out

Random walks are used to model a wide range of phenomena, from Brownian motion to gambling. For
example, a gambler who bets on heads or tails on a coin toss wins or loses his bet each turn. The amount of
money the gambler has throughout the game is a random walk. Although the bets in each turn may be
different, it is easy to see that the gambler wins the maximum amount of money if he wins every turn.
Similarly, he loses the maximum amount if he loses every turn.

We consider the following two—dimensional variation of the random walk. We are given » two—dimensional
nonzero vectors v; = (x; ¥y, no two of which are parallel. In step i, a coin is flipped. If it is heads, we move x;
meters in the x direction and y; meters in the y direction. If it is tails, we move —x; and —y; meters in the x and

y directions.

We are interested in computing the maximum distance we can be away from our starting point. This is easy in
one—dimension, but it is not so easy in the two—dimensional version.

Input

The input consists of a number of test cases. Each test case starts with a line containing the integer n, which is
at most 100. Each of the next n lines gives a pair of integers x; and y; specifying v;. The coordinates are less
than 1000 in magnitude. The end of input is specified by n = 0.

Output

For each test case, print on a line the maximum distance we can be away from the starting point, in the format
shown below. Output the answer to 3 decimal places.

Sample input

Problem B: Random Walk 1

Problem B: Random Walk

Output for sample input

3.000 meters.
5.099 meters.
37.336 meters.

Maximum distance
Maximum distance
Maximum distance

Output for sample input

Problem C: Paint Mix

Problem C: Paint Mix

Imput: paint.in
OQOutput: paint.out

You are given two large pails. One of them (known as the black pail) contains B gallons of black paint. The
other one (known as the white pail) contains W gallons of white paint. You will go through a number of
iterations of pouring paint first from the black pail into the white pail, then from the white pail into the black
pail. More specifically, in each iteration you first pour C cups of paint from the black pail into the white pail
(and thoroughly mix the paint in the white pail), then pour C cups of paint from the white pail back into the
black pail (and thoroughly mix the paint in the black pail). B, W, and C are positive integers; each of B and W
is less than or equal to 50, and C < 16 * B (recall that 1 gallon equals 16 cups). The white pail's capacity is at
least B+W.

As you perform many successive iterations, the ratio of black paint to white paint in each pail will approach
B/W. Although these ratios will never actually be equal to B/ one can ask: how many iterations are needed to
make sure that the black—to—white paint ratio in each of the two pails differs from B/W by less than a certain
tolerance. We define the tolerance to be 0.00001.

Input

The input consists of a number of lines. Each line contains input for one instance of the problem: three
positive integers representing the values for B, W, and C, as described above. The input is terminated with a
line where B=W = C = (.

Output

Print one line of output for each instance. Each line of output will contain one positive integer: the smallest
number of iterations required such that the black—to—white paint ratio in each of the two pails differs from
B/W by less than the tolerance value.

Sample input

1
4
o 7
0

O W w
(=T R

Output for sample input

145
38
66

Problem C: Paint Mix 1

Problem D: Open and Close

Problem D: Open and Close

Input: openclose.in
Output: openclose.out

Morphological operations are tools that are used for extracting image components to represent and describe
region shapes. Two common morphological operations are open and close. Before we define these operations,
we first have to define how images are represented.

Given a binary image 4 with M rows and N columns, we can represent 4 as a set of the coordinates (7, ¢) (1
<=r <=M, 1 <= ¢ <= N) such that the pixel at the specified coordinates is 1. The coordinates of the top—left
corner are (1, 1). We are also given a binary image B (called the structuring element) with 25+1 rows and
columns. The structuring element can be represented as a set as before, except that (—S,—S) are the
coordinates of the pixel at the top—left corner.

Two operations important in morphological image processing are dilation and erosion. Dilation of an image 4
by the structuring element B is defined by:

A~B={a+b| aini, bin B } intersect Z

where the addition of coordinates is defined componentwise, and Z is the set of coordinates (3,j) with 1 <= i
<=M and 1 <=j <= N. Similarly, erosion of 4 by B is defined by:

AvB={w)|w+binAh for every b in B }

With these two operations defined, the opening of 4 by B is defined by
AoB= (AvB) *“B

and the closing of 4 by B is defined by
A.B=(A"B) VB

Roughly speaking, the opening operation is used to remove small details while preserving the overall shape.
The closing operation is used to fill in gaps while preserving the overall shape.

Input

The input consists of a number of cases. Each case starts with a line containing the integers M, N, and S
separated by spaces (10 <= M, N <= 256, 1 <= § <= 4). The next M lines contain the rows of the image 4
specified by N characters that are . (0) or "*' (1). The next 28+ lines specify the structuring element B in 2
similar manner. The input is terminated by M = N = S = 0.

Output
For each case, print the case number followed by a blank line. Then display the result of A o B followed by a

blank line, followed by the result of A . B. The format of the resulting images is the same as those of the
input images. Separate the output for different cases by a line consisting of 75 equal signs (=).

Problem D: Open and Close 1

Sample input

***".***.
'*********'-
'**********_
_****i****'.
_***__.*'*-

‘***__.***_
JFEE Rk k kK k|
.**********_
.*********._
IR i L

Case 1

.***___***..
JHEkkdkkkkkk
JEREkEkdkkkkdk
.*********_.

* Kk &k
- ..
LJERkFk kA kkk
JKkdkk ik Ak ok ok
*********'

l***ll.***‘.

Problem D: Open and Close

Sample input

Problem D: Open and Close

_***.__***..
'***i*****__
_**********.
'*********'_

-U**Ill*

.****.****.'
.***k*****._
.**********_
.*********_-

 REE * ok

Sample input

Problem E: Hour Glass

Problem E: Hour Glass

Imput: hourglass.in
Output: hourglass.out

You are given two hour glasses. They measure M and N minutes respectively. You wish to use these two hour
glasses to measure a target period of 7" minutes. Each hour glass consists of two glass bowls connected by a
narrow section (the "narrows") where sand can flow from one bowl into the other. If all of the sand is in the
lower bowl and the hour glass is turned upside down ("flipped"), the sand will flow into the other bowl (which
is now the lower bowl) in M or N minutes, respectively.

Initially (at time = 0), all of the sand is in the lower bowl in each of the hour glasses, and both hour glasses are
flipped. Subsequently, one can flip one or both of the hour glasses according to the following rules.

1. When only one of the hour glasses expires at a particular instant, one has four choices of action:
1. flip the hour glass that expired,;
2. flip the hour glass that did not expire;
3. flip both hour glasses;
4. do not flip either one, just let one hour glass sit idle until the other one expires.
2. When both of the hour glasses happen to expire simultaneously, or if one hour glass has been sitting
idle and the other one has just expired, one must flip at least one of the hour glasses.
3. Any hour glass may be flipped only at an instant when either the same hour glass, or the other one, or
both have just expired.

A particular time T can be measured if there is a sequence of hour glass flips such that one (or both) of the
hour glasses expires at time 7" during the sequence. You may assume that flipping an hour glass is
instantaneous and does not take any time.

Input

The input consists of a number of lines, each representing one instance of the problem. Each line contains
three positive integers which represent the values of M, N, and 7. You may assume that 2 <= M <N <= 200
and M <= T <= 2000. The input is terminated by a line containing three zeroes.

Output

For each instance of the problem, print the shortest sequence of flips which measures the target time 7. For
each flip, print on a single line the time, followed by a colon and a space, followed by the capacities of the
hour glasses to be flipped (separated by a comma if both are flipped). The sequence of flips should be printed
in chronological order. If there are multiple shortest sequences, any one is acceptable. If it is impossible to
measure the target time T, print Impossible! on a single line. The output for each instance of the problem
should be followed by a line consisting of ten hyphens.

Sample input

4 17 21
4 17 22
8 13 23
000

Problem E: Hour Glass 1

Problem E: Hour Glass

Output for sample input

0: 4,17
TF:s: 417
0: 4,17
4: 4
8: 4
12: 4
16: 4
17: 4
18: 4,17
0: 8,13
8: 8
13: 8,13
18: 8,13

Output for sample input

Problem F: Smallest Difference

Problem F: Smallest Difference

Imput: mindiff.in
Output: mindiff.out

Given a number of distinct decimal digits, you can form one integer by choosing a non—empty subset of these
digits and writing them in some order. The remaining digits can be written down in some order to form a
second integer. Unless the resulting integer is 0, the integer may not start with the digit 0.

For example, if you are given the digits 0, 1, 2, 4, 6 and 7, you can write the pair of integers 10 and 2467. Of
course, there are many ways to form such pairs of integers: 210 and 764, 204 and 176, etc. The absolute value

of the difference between the integers in the last pair is 28, and it turns out that no other pair formed by the
rules above can achieve a smaller difference.

Input
The first line of input contains the number of cases to follow. For each case, there is one line of input
containing at least two but no more than 10 decimal digits. (The decimal digits are 0, 1, ..., 9.) No digit

appears more than once in one line of the input. The digits will appear in increasing order, separated by
exactly one blank space.

Output

For each test case, write on a single line the smallest absolute difference of two integers that can be written
from the given digits as described by the rules above.

Sample input

1
012467

Output for sample input

28

Problem F: Smallest Difference 1

Problem G: Faulty Odometer

Problem G: Faulty Odometer

Input: odometer.in
Output: odometer . out

You are given a car odometer which displays the miles traveled as an integer. The odometer has a defect,
however: it proceeds from the digit 3 to the digit 5, always skipping over the digit 4. This defect shows up in
all positions (the one's, the ten's, the hundred's, etc.). For example, if the odometer displays 15339 and the car
travels one mile, odometer reading changes to 15350 (instead of 15340).

Input

Each line of input contains a positive integer in the range 1..999999999 which represents an odometer
reading. (Leading zeros will not appear in the input.) The end of input is indicated by a line containing a
single 0. You may assume that no odometer reading will contain the digit 4.

Output

Each line of input will produce exactly one line of output, which will contain: the odometer reading from the
input, a colon, one blank space, and the actual number of miles traveled by the car.

Sample input

13

15
2003
2005
239
250
1399
1500
999999
0

Output for sample input

13: 12

15: 13

2003: 1461
2005: 1462
239: 197

250: 198

1399: 1052
1500: 1053
999999: 531440

Problem G: Faulty Odometer 1

Problem H: Last Digits

Problem H: Last Digits

Input: digits.in
Output: digits.out

Exponentiation of one integer by another often produces very large results. In this problem, we will compute a
function based on repeated exponentiation, but output only the last 7 digits of the result. Doing this efficiently
requires careful thought about how to avoid computing the full answer.

Given integers b, n, and i, we define the function f(x) recursively by f(x) = b1 if x > 0, and f(0)=1. Your
job is to efficiently compute the last # decimal digits of f().

Input
The input consists of a number of test cases. Each test case starts with the integer b (1 <= b <= 100) called the
base. On the next line is the integer i (1 <=i <= 100) called the iteration count. And finally, the last line

contains the number # (1 <= n <= 7), which is the number of decimal digits to output. The input is terminated
when b= 0.

Output

For each test case, print on one line the last » digits of f(i) for the base b specified. If the result has fewer than
n digits, pad the result with zeroes on the left so that there are exactly # digits.

Sample input

o o

O - WaARR--IRN
(=]

Output for sample input

0065536
000000
4195387

Problem H: Last Digits 1

Problem I: Suit Distribution

Problem I: Suit Distribution

Imput: suit.in
Output: suit.out

Bridge is a 4-player (two teams of two) card game with many complicated conventions that even experienced
players have difficulty keeping track of. Fortunately, we are not interested in these conventions for this
problem. In fact, it is not even important if you understand how to play the game.

What is important to know is that the way the cards are distributed among your two opponents often
determine whether you will be successful in your game. For example, suppose you and your partner hold 8
spades. The remaining 5 spades are held by your opponents (since there are 13 cards in each suit) and can be
distributed in the following ways: 0~5, 1-4, 2~3. Notice that a 0~5 "split" can be realized in two
ways——opponent 1 has no spade and opponent 2 has 5 spades, or vice versa.

Good bridge players know that the best line of play often depends on the distribution. Sometimes good
players can "read their opponents' cards" and determine the distribution, but sometimes even good players
have to guess. In those cases, knowing the probability of the different distributions would be useful in making
an educated guess.

You can assume that the 52 cards in a deck are dealt out randomly to 4 players, so that every player has 13
cards, and that you know which 26 cards your team holds.

Input

The input consists of a number of cases. Each case consists of two integers a, b (0<=g b<=13,a+b<=
13). The input is terminated by a = b = —1.

Output

For each case, print the probability of a split of a+b cards so that one opponent has a cards and the other has b
cards in the format as shown in the sample output. You may assume that the remaining cards in the suit are
held by you and your partner. Output the probabilities to 8 decimal places.

Sample input

= b
B W b2

-1 -1

Output for sample input

2-2 split: 0.40695652
3-3 split: 0.35527950
4-2 split: 0.48447205

Problem I: Suit Distribution 1

